Abstract
In this paper, the role of oceanic Rossby waves in climate variability is reviewed, as well as their dynamics in tropical oceans and at mid-latitudes. For tropical oceans, both the interactions between equatorial Rossby and Kelvin waves, and off-equatorial Rossby waves are privileged. The difference in the size of the basins induces disparities both in the forcing modes and in the dynamics of the tropical waves, which form a single quasi-stationary wave system. For Rossby waves at mid-latitudes, a wide range of periods is considered, varying from a few days to several million years when very-long-period Rossby waves winding around the subtropical gyres are hypothesized. This review focuses on the resonant forcing of Rossby waves that seems ubiquitous: the quasi-geostrophic adjustment of the oceans favors natural periods close to the forcing period, while those far from it are damped because of friction. Prospective work concentrates on the resonant forcing of dynamical systems in subharmonic modes. According to this new concept, the development of ENSO depends on its date of occurrence. Opportunities arise to shed new light on open issues such as the Middle Pleistocene transition.
Subject
Ocean Engineering,Water Science and Technology,Civil and Structural Engineering
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献