Integrating Support Vector Regression with Genetic Algorithm for Hydrate Formation Condition Prediction

Author:

Cao Jie,Zhu ShijieORCID,Li Chao,Han Bing

Abstract

To predict the natural gas hydrate formation conditions quickly and accurately, a novel hybrid genetic algorithm–support vector machine (GA-SVM) model was developed. The input variables of the model are the relative molecular weight of the natural gas (M) and the hydrate formation pressure (P). The output variable is the hydrate formation temperature (T). Among 10 gas samples, 457 of 688 data points were used for training to identify the optimal support vector machine (SVM) model structure. The remaining 231 data points were used to evaluate the generalisation capability of the best trained SVM model. Comparisons with nine other models and analysis of the outlier detection revealed that the GA-SVM model had the smallest average absolute relative deviation (0.04%). Additionally, the proposed GA-SVM model had the smallest amount of outlier data and the best stability in predicting the gas hydrate formation conditions in the gas relative molecular weight range of 15.64–28.97 g/mol and the natural gas pressure range of 367.65–33,948.90 kPa. The present study provides a new approach for accurately predicting the gas hydrate formation conditions.

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3