Modelling Hydrate Deposition in Gas-Dominant Subsea Pipelines in Operating and Shutdown Scenarios

Author:

Umuteme Oghenethoja Monday1ORCID,Islam Sheikh Zahidul1ORCID,Hossain Mamdud1ORCID,Karnik Aditya1ORCID

Affiliation:

1. School of Engineering, Robert Gordon University, Aberdeen AB10 7GJ, UK

Abstract

This study addresses a significant research gap related to hydrate formation in subsea gas pipelines, with a specific focus on deposition rates during shutdown scenarios, which has received limited attention in previous studies. Past research has employed various methodologies, including experimental, analytical, and computational fluid dynamics (CFD) approaches, to predict hydrate formation conditions, but none have tackled the prediction of hydrate deposition during shutdowns. In this study, we employ a multiple linear regression modeling approach using the MATLAB regression learner app. Four distinct regression models were developed using data generated from 81 CFD simulations, utilising a 10 m length by 0.0204 m diameter 3D horizontal pipe model in Ansys Fluent, as previously developed Through cross-validation against experimental data, the standard linear regression model emerged as the most reliable choice for predicting hydrate deposition rates, providing predictions within ±10% uncertainty bounds of experimental results up to pressures of 8.8 MPa at hydrate-forming temperatures. The uniqueness of this new model lies in its ability to estimate the risk of hydrate deposition in subsea gas pipelines, especially with low gas flow rates and during shutdown periods, which are critical for maintenance planning. Furthermore, by estimating depositional volumes, the model predicts hydrate slurry volumes at receiving facilities, contributing to energy sustainability and benefiting gas transport pipeline operators, particularly in aging gas fields with declining production.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3