Listen to the Brain–Auditory Sound Source Localization in Neuromorphic Computing Architectures

Author:

Schmid Daniel1ORCID,Oess Timo2ORCID,Neumann Heiko1ORCID

Affiliation:

1. Institute of Neural Information Processing, Ulm University, James-Franck-Ring, 89081 Ulm, Germany

2. Bernstein Center Freiburg, University of Freiburg, Hansastr. 9a, 79104 Freiburg im Breisgau, Germany

Abstract

Conventional processing of sensory input often relies on uniform sampling leading to redundant information and unnecessary resource consumption throughout the entire processing pipeline. Neuromorphic computing challenges these conventions by mimicking biology and employing distributed event-based hardware. Based on the task of lateral auditory sound source localization (SSL), we propose a generic approach to map biologically inspired neural networks to neuromorphic hardware. First, we model the neural mechanisms of SSL based on the interaural level difference (ILD). Afterward, we identify generic computational motifs within the model and transform them into spike-based components. A hardware-specific step then implements them on neuromorphic hardware. We exemplify our approach by mapping the neural SSL model onto two platforms, namely the IBM TrueNorth Neurosynaptic System and SpiNNaker. Both implementations have been tested on synthetic and real-world data in terms of neural tunings and readout characteristics. For synthetic stimuli, both implementations provide a perfect readout (100% accuracy). Preliminary real-world experiments yield accuracies of 78% (TrueNorth) and 13% (SpiNNaker), RMSEs of 41∘ and 39∘, and MAEs of 18∘ and 29∘, respectively. Overall, the proposed mapping approach allows for the successful implementation of the same SSL model on two different neuromorphic architectures paving the way toward more hardware-independent neural SSL.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3