Low-Delay and Energy-Efficient Opportunistic Routing for Maritime Search and Rescue Wireless Sensor Networks

Author:

Xian JiangfengORCID,Wu HuafengORCID,Mei XiaojunORCID,Chen XinqiangORCID,Yang Yongsheng

Abstract

After the occurrence of a maritime disaster, to save human life and search for important property equipment in the first time, it is indispensable to efficiently transmit search and rescue sea area data to the maritime search and rescue command center (MSRCC) in real-time, so that the MSRCC can make timely and accurate decisions. The key to determining the efficiency of data forwarding is the quality of the routing protocol. Due to the high dynamics of the marine environment and the limited energy of the marine node, the coverage hole and routing path failure problems occur frequently when using the existing routing algorithm for marine data forwarding. Based on the above background, in this work, we study a low-latency and energy-efficient opportunistic routing protocol for maritime search and rescue wireless sensor networks (MSR-WSNs). Considering the adverse impact of wave shadowing on signal transmission, an effective link reliability prediction method is first investigated to quantify the link connectivity among nodes. To mitigate the end-to-end time delay, an optimal expected packet advancement is then derived by combining link con-nectivity with geographic progress threshold θ. After that, based on the link connectivity between marine nodes, the optimal expected packet advancement prediction, the distance from the sensing nodes to the sink, and the remaining energy distribution of the nodes, the priority of candidate nodes is calculated and sorted in descending order. Finally, timer-based coordination algorithm is adopted to perform the marine data packet forwarding so as to avoid packet conflict. Computer simulation results demonstrate that compared with benchmark algorithms, the data packet delivery ratio, the delay performance and the average node energy consumption (the average node speed is 20 m/s) of the proposed opportunistic routing protocol are improved by more than 21.4%, 39.2% and 18.1%, respectively.

Funder

National Natural Science Foundation of China

National Key Research and Development Program

China Postdoctoral Science Foundation

Fund of National Engineering Research Center for Water Transport Safety

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3