Kernel Minimum Noise Fraction Transformation-Based Background Separation Model for Hyperspectral Anomaly Detection

Author:

Xue Tianru,Jia JianxinORCID,Xie HuiORCID,Zhang Changxing,Deng XuanORCID,Wang YuemingORCID

Abstract

A significant challenge in methods for anomaly detection (AD) in hyperspectral images (HSIs) is determining how to construct an efficient representation for anomalies and background information. Considering the high-order structures of HSIs and the estimation of anomalies and background information in AD, this article proposes a kernel minimum noise fraction transformation-based background separation model (KMNF-BSM) to separate the anomalies and background information. First, spectral-domain KMNF transformation is performed on the original hyperspectral data to fully mine the high-order correlation between spectral bands. Then, a BSM that combines the outlier removal, the iteration strategy, and the Reed–Xiaoli detector (RXD) is proposed to obtain accurate anomalous and background pixel sets based on the extracted features. Finally, the anomalous and background pixel sets are used as input for anomaly detectors to improve the background suppression and anomaly detection capabilities. Experiments on several HSIs with different spatial and spectral resolutions over different scenes are performed. The results demonstrate that the KMNF-BSM-based algorithms have better target detectability and background suppressibility than other state-of-the-art algorithms.

Funder

This research was funded by National Civil Aerospace Project

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3