JointNet: Multitask Learning Framework for Denoising and Detecting Anomalies in Hyperspectral Remote Sensing

Author:

Shao Yingzhao1,Li Shuhan23,Yang Pengfei23,Cheng Fei3,Ding Yueli3,Sun Jianguo4ORCID

Affiliation:

1. State Key Laboratory of Integrated Services Networks, Xidian University, Xi’an 710071, China

2. Key Laboratory of Smart Human-Computer Interaction and Wearable Technology of Shaanxi Province, Xi’an 710071, China

3. School of Computer Science and Technology, Xidian University, Xi’an 710126, China

4. Zhejiang Provincial Engineering Research Center for Industrial Data Element Circulation and Security Management, Hangzhou 311231, China

Abstract

One of the significant challenges with traditional single-task learning-based anomaly detection using noisy hyperspectral images (HSIs) is the loss of anomaly targets during denoising, especially when the noise and anomaly targets are similar. This issue significantly affects the detection accuracy. To address this problem, this paper proposes a multitask learning (MTL)-based method for detecting anomalies in noisy HSIs. Firstly, a preliminary detection approach based on the JointNet model, which decomposes the noisy HSI into a pure background and a noise–anomaly target mixing component, is introduced. This approach integrates the minimum noise fraction rotation (MNF) algorithm into an autoencoder (AE), effectively isolating the noise while retaining critical features for anomaly detection. Building upon this, the JointNet model is further optimized to ensure that the noise information is shared between the denoising and anomaly detection subtasks, preserving the integrity of the training data during the anomaly detection process and resolving the issue of losing anomaly targets during denoising. A novel loss function is designed to enable the joint learning of both subtasks under the multitask learning model. In addition, a noise score evaluation metric is introduced to calculate the probability of a pixel being an anomaly target, allowing for a clear distinction between noise and anomaly targets, thus providing the final anomaly detection results. The effectiveness of the proposed model and method is validated via testing on the HYDICE and San Diego datasets. The denoising metric results of the PSNR, SSIM, and SAM are 41.79, 0.91, and 4.350 and 42.83, 0.93, and 3.558 on the HYDICE and San Diego datasets, respectively. The anomaly detection ACU is 0.943 and 0.959, respectively. The proposed method outperforms the other algorithms, demonstrating that the reconstructed images using this method exhibited lower noise levels and more complete image information, and the JointNet model outperforms the mainstream HSI anomaly detection algorithms in both the quantitative evaluation and visual effect, showcasing its improved detection capabilities.

Funder

Key Research and Development Program of Shaanxi

Publisher

MDPI AG

Reference44 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3