Affiliation:
1. State Key Laboratory of Integrated Services Networks, Xidian University, Xi’an 710071, China
2. Key Laboratory of Smart Human-Computer Interaction and Wearable Technology of Shaanxi Province, Xi’an 710071, China
3. School of Computer Science and Technology, Xidian University, Xi’an 710126, China
4. Zhejiang Provincial Engineering Research Center for Industrial Data Element Circulation and Security Management, Hangzhou 311231, China
Abstract
One of the significant challenges with traditional single-task learning-based anomaly detection using noisy hyperspectral images (HSIs) is the loss of anomaly targets during denoising, especially when the noise and anomaly targets are similar. This issue significantly affects the detection accuracy. To address this problem, this paper proposes a multitask learning (MTL)-based method for detecting anomalies in noisy HSIs. Firstly, a preliminary detection approach based on the JointNet model, which decomposes the noisy HSI into a pure background and a noise–anomaly target mixing component, is introduced. This approach integrates the minimum noise fraction rotation (MNF) algorithm into an autoencoder (AE), effectively isolating the noise while retaining critical features for anomaly detection. Building upon this, the JointNet model is further optimized to ensure that the noise information is shared between the denoising and anomaly detection subtasks, preserving the integrity of the training data during the anomaly detection process and resolving the issue of losing anomaly targets during denoising. A novel loss function is designed to enable the joint learning of both subtasks under the multitask learning model. In addition, a noise score evaluation metric is introduced to calculate the probability of a pixel being an anomaly target, allowing for a clear distinction between noise and anomaly targets, thus providing the final anomaly detection results. The effectiveness of the proposed model and method is validated via testing on the HYDICE and San Diego datasets. The denoising metric results of the PSNR, SSIM, and SAM are 41.79, 0.91, and 4.350 and 42.83, 0.93, and 3.558 on the HYDICE and San Diego datasets, respectively. The anomaly detection ACU is 0.943 and 0.959, respectively. The proposed method outperforms the other algorithms, demonstrating that the reconstructed images using this method exhibited lower noise levels and more complete image information, and the JointNet model outperforms the mainstream HSI anomaly detection algorithms in both the quantitative evaluation and visual effect, showcasing its improved detection capabilities.
Funder
Key Research and Development Program of Shaanxi