MLe-KCNQ2: An Artificial Intelligence Model for the Prognosis of Missense KCNQ2 Gene Variants

Author:

Saez-Matia Alba1ORCID,Ibarluzea Markel G.23,M-Alicante Sara12,Muguruza-Montero Arantza1ORCID,Nuñez Eider12ORCID,Ramis Rafael23,Ballesteros Oscar R.24ORCID,Lasa-Goicuria Diego3,Fons Carmen5,Gallego Mónica6ORCID,Casis Oscar6ORCID,Leonardo Aritz23ORCID,Bergara Aitor234ORCID,Villarroel Alvaro1

Affiliation:

1. Instituto Biofisika, CSIC-UPV/EHU, 48940 Leioa, Spain

2. Physics Department, Universidad del País Vasco, UPV/EHU, 48940 Leioa, Spain

3. Donostia International Physics Center, 20018 Donostia, Spain

4. Centro de Física de Materiales CFM, CSIC-UPV/EHU, 20018 Donostia, Spain

5. Pediatric Neurology Department, Sant Joan de Déu Hospital, Institut de Recerca Sant Joan de Déu, Barcelona University, 08950 Barcelona, Spain

6. Departamento de Fisiología, Universidad del País Vasco, UPV/EHU, 01006 Vitoria-Gasteiz, Spain

Abstract

Despite the increasing availability of genomic data and enhanced data analysis procedures, predicting the severity of associated diseases remains elusive in the absence of clinical descriptors. To address this challenge, we have focused on the KV7.2 voltage-gated potassium channel gene (KCNQ2), known for its link to developmental delays and various epilepsies, including self-limited benign familial neonatal epilepsy and epileptic encephalopathy. Genome-wide tools often exhibit a tendency to overestimate deleterious mutations, frequently overlooking tolerated variants, and lack the capacity to discriminate variant severity. This study introduces a novel approach by evaluating multiple machine learning (ML) protocols and descriptors. The combination of genomic information with a novel Variant Frequency Index (VFI) builds a robust foundation for constructing reliable gene-specific ML models. The ensemble model, MLe-KCNQ2, formed through logistic regression, support vector machine, random forest and gradient boosting algorithms, achieves specificity and sensitivity values surpassing 0.95 (AUC-ROC > 0.98). The ensemble MLe-KCNQ2 model also categorizes pathogenic mutations as benign or severe, with an area under the receiver operating characteristic curve (AUC-ROC) above 0.67. This study not only presents a transferable methodology for accurately classifying KCNQ2 missense variants, but also provides valuable insights for clinical counseling and aids in the determination of variant severity. The research context emphasizes the necessity of precise variant classification, especially for genes like KCNQ2, contributing to the broader understanding of gene-specific challenges in the field of genomic research. The MLe-KCNQ2 model stands as a promising tool for enhancing clinical decision making and prognosis in the realm of KCNQ2-related pathologies.

Funder

Government of the Autonomous Community of the Basque Country

Spanish Ministry of Science and Innovation

Basque Government and administered by the University of the Basque Country

Publisher

MDPI AG

Reference66 articles.

1. Bellini, G., Miceli, F., Soldovieri, M.V., del Miraglia, G.E., Coppola, G., and Taglialatela, M. (2023, June 21). KCNQ2-Related disorders, GeneReviews, Available online: http://www.ncbi.nlm.nih.gov/books/NBK32534/.

2. Optimizing genomic medicine in epilepsy through a gene-customized approach to missense variant interpretation;Traynelis;Genome Res.,2017

3. Precision medicine for genetic epilepsy on the horizon: Recent advances, present challenges, and suggestions for continued progress;Knowles;Epilepsia,2022

4. Opportunities and challenges for the computational interpretation of rare variation in clinically important genes;McInnes;Am. J. Hum. Genet.,2021

5. A novel potassium channel gene, KCNQ2, is mutated in an inherited epilepsy of newborns;Singh;Nat. Genet.,1998

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3