A Robust Hybrid Deep Convolutional Neural Network for COVID-19 Disease Identification from Chest X-ray Images

Author:

Sanida Theodora1ORCID,Tabakis Irene-Maria1ORCID,Sanida Maria Vasiliki2,Sideris Argyrios1ORCID,Dasygenis Minas1ORCID

Affiliation:

1. Department of Electrical and Computer Engineering, University of Western Macedonia, 50131 Kozani, Greece

2. Department of Digital Systems, University of Piraeus, 18534 Piraeus, Greece

Abstract

The prompt and accurate identification of the causes of pneumonia is necessary to implement rapid treatment and preventative approaches, reduce the burden of infections, and develop more successful intervention strategies. There has been an increase in the number of new pneumonia cases and diseases known as acute respiratory distress syndrome (ARDS) as a direct consequence of the spread of COVID-19. Chest radiography has evolved to the point that it is now an indispensable diagnostic tool for COVID-19 infection pneumonia in hospitals. To fully exploit the technique, it is crucial to design a computer-aided diagnostic (CAD) system to assist doctors and other medical professionals in establishing an accurate and rapid diagnosis of pneumonia. This article presents a robust hybrid deep convolutional neural network (DCNN) for rapidly identifying three categories (normal, COVID-19 and pneumonia (viral or bacterial)) using X-ray image data sourced from the COVID-QU-Ex dataset. The proposed approach on the test set achieved a rate of 99.25% accuracy, 99.10% Kappa-score, 99.43% AUC, 99.24% F1-score, 99.25% recall, and 99.23% precision, respectively. The outcomes of the experiments demonstrate that the presented hybrid DCNN mechanism for identifying three categories utilising X-ray images is robust and effective.

Publisher

MDPI AG

Subject

Information Systems

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. COVID-19 disease detection using attention based Bi-Directional capsule network model;Biomedical Signal Processing and Control;2024-10

2. Enhancing Pulmonary Diagnosis in Chest X-rays through Generative AI Techniques;J;2024-08-13

3. Multiclass deep learning model for predicting lung diseases based on honey badger algorithm;International Journal of Information Technology;2024-07-29

4. An Advanced Deep Learning Framework for Multi-Class Diagnosis from Chest X-ray Images;J;2024-01-22

5. Comparing Convolutional Neural Networks for Covid-19 Detection in Chest X-Ray Images;2023 10th IEEE Uttar Pradesh Section International Conference on Electrical, Electronics and Computer Engineering (UPCON);2023-12-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3