Sex Associated Effects of Noise Pollution in Stone Sculpin (Paracottus knerii) as a Model Object in the Context of Human-Induced Rapid Environmental Change

Author:

Sapozhnikova Yulia P.ORCID,Koroleva Anastasia G.ORCID,Yakhnenko Vera M.ORCID,Khanaev Igor V.ORCID,Glyzina Olga Yu.ORCID,Avezova Tatyana N.ORCID,Volkova Aleksandra A.,Mushinskaya Angela V.,Tyagun Marina L.,Shagun Artem N.,Makarov Mikhail M.ORCID,Kirilchik Sergey V.,Sudakov Nikolay P.ORCID,Klimenkov Igor V.,Sukhanova Lyubov V.

Abstract

This work simulates the consequences of HIREC using stone sculpins as model organisms. Sex-dependent effects of long-term noise exposure at mean sound pressure levels of 160–179 dB re 1 μPa (SPLpk–pk) were measured. We applied a multilevel approach to testing the stress response: a comparative analysis of the macula sacculi and an assessment of hematological and molecular stress responses. Noise exposure resulted in hair cell loss, changes in some cytometric parameters in blood, and an increase in the number of functionally active mitochondria in the red blood cells of males and its decrease in females, demonstrating a mitochondrial allostatic load and depletion of functional reserve. Finally, a statistically significant decrease in the telomerase activity of the auditory epithelium and a shortening of telomere length in the brain as molecular markers of stress were observed after noise exposure only in females. No significant decrease in telomerase activity and shortening of telomere length in nerve target tissues were observed in stressed males. However, we recorded an increase in the telomerase activity in male gonads. This sex-dependent difference in load may be associated with accelerated cellular aging in females and lower stress-related long-term risk in males. In this article, we discuss possible reasons for these noise-induced stress effects.

Funder

The state task

Russian Foundation for Basic Research

Publisher

MDPI AG

Subject

General Agricultural and Biological Sciences,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3