Monooxygenases and Antibiotic Resistance: A Focus on Carbapenems

Author:

Minerdi Daniela1ORCID,Loqui Davide2,Sabbatini Paolo1ORCID

Affiliation:

1. Department of Agricultural, Forestry and Food Sciences, University of Turin, Largo Paolo Braccini 2, 10095 Grugliasco, TO, Italy

2. Emergency Department, Città della Salute e della Scienza of Turin, 10100 Turin, TO, Italy

Abstract

Carbapenems are a group of broad-spectrum beta-lactam antibiotics that in many cases are the last effective defense against infections caused by multidrug-resistant bacteria, such as some strains of Klebsiella pneumoniae, Escherichia coli, Pseudomonas aeruginosa, and Acinetobacter baumannii. Resistance to carbapenems has emerged and is beginning to spread, becoming an ongoing public-health problem of global dimensions, causing serious outbreaks, and dramatically limiting treatment options. This paper reviews the role of flavin monooxygenases in antibiotic resistance, with a specific focus on carbapenem resistance and the recently discovered mechanism mediated by Baeyer–Villiger monooxygenases. Flavin monooxygenases are enzymes involved in the metabolism and detoxification of compounds, including antibiotics. Understanding their role in antibiotic resistance is crucial. Carbapenems are powerful antibiotics used to treat severe infections caused by multidrug-resistant bacteria. However, the rise of carbapenem-resistant strains poses a significant challenge. This paper explores the mechanisms by which flavin monooxygenases confer resistance to carbapenems, examining molecular pathways and genetic factors. Additionally, this paper highlights the discovery of Baeyer–Villiger monooxygenases’ involvement in antibiotic resistance. These enzymes catalyze the insertion of oxygen atoms into specific chemical bonds. Recent studies have revealed their unexpected role in promoting carbapenem resistance. Through a comprehensive analysis of the literature, this paper contributes to the understanding of the interplay between flavin monooxygenases, carbapenem resistance, and Baeyer–Villiger monooxygenases. By exploring these mechanisms, it aims to inform the development of strategies to combat antibiotic resistance, a critical global health concern.

Publisher

MDPI AG

Subject

General Agricultural and Biological Sciences,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3