Deep Learning and Antibiotic Resistance

Author:

Popa Stefan LucianORCID,Pop CristinaORCID,Dita Miruna Oana,Brata Vlad DumitruORCID,Bolchis RoxanaORCID,Czako ZoltanORCID,Saadani Mohamed Mehdi,Ismaiel AbdulrahmanORCID,Dumitrascu Dinu Iuliu,Grad Simona,David Liliana,Cismaru Gabriel,Padureanu Alexandru Marius

Abstract

Antibiotic resistance (AR) is a naturally occurring phenomenon with the capacity to render useless all known antibiotics in the fight against bacterial infections. Although bacterial resistance appeared before any human life form, this process has accelerated in the past years. Important causes of AR in modern times could be the over-prescription of antibiotics, the presence of faulty infection-prevention strategies, pollution in overcrowded areas, or the use of antibiotics in agriculture and farming, together with a decreased interest from the pharmaceutical industry in researching and testing new antibiotics. The last cause is primarily due to the high costs of developing antibiotics. The aim of the present review is to highlight the techniques that are being developed for the identification of new antibiotics to assist this lengthy process, using artificial intelligence (AI). AI can shorten the preclinical phase by rapidly generating many substances based on algorithms created by machine learning (ML) through techniques such as neural networks (NN) or deep learning (DL). Recently, a text mining system that incorporates DL algorithms was used to help and speed up the data curation process. Moreover, new and old methods are being used to identify new antibiotics, such as the combination of quantitative structure-activity relationship (QSAR) methods with ML or Raman spectroscopy and MALDI-TOF MS combined with NN, offering faster and easier interpretation of results. Thus, AI techniques are important additional tools for researchers and clinicians in the race for new methods of overcoming bacterial resistance.

Publisher

MDPI AG

Subject

Pharmacology (medical),Infectious Diseases,Microbiology (medical),General Pharmacology, Toxicology and Pharmaceutics,Biochemistry,Microbiology

Reference50 articles.

1. The Prehistory of Antibiotic Resistance;Cold Spring Harb. Perspect. Med.,2016

2. (2022, September 15). A Scientific Roadmap for Antibiotic Discovery. Available online: http://pew.org/26ZYUqA.

3. Lessons learned from COVID-19 for the post-antibiotic future;Glob. Health,2020

4. New antibiotic agents in the pipeline and how they can help overcome microbial resistance;Virulence,2013

5. The global preclinical antibacterial pipeline;Nat. Rev. Microbiol.,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3