Abstract
Nowadays, nanostructures having tremendous chemical and physical properties are gaining attention in the biomedical industry. However, when they are prepared through classical methods (physical and chemical), they are often non-biocompatible and toxic. Considering the mentioned factors, in this research, organometallic silver nanostructures (OMAgNs) have been prepared by the green chemistry method using the acetone, methanol, and methanol-hexane-based extracts of the medicinally important plant Cichorium intybus. Secondary metabolites from C. intybus can be used as an alternative to synthetic reagents at an industrial scale to manufacture biosafe and economical nanostructures with enhanced physicochemical parameters. Prepared nanostructures were characterized using SEM, XRD, FTIR, TGA, UV, and zeta potential measurement. SEM analysis revealed different shapes of OMAgNs, prepared with various extracts. XRD analysis showed the crystallinity of the nanostructures. FTIR spectroscopy helped to identify groups of compounds present in the extracts and used for the OMAgNs synthesis. Out of the three tested OMAgNs, those prepared with methanol extract were selected due to the highest obtained yield and stability (highest negative zeta potential) and were tested as a cost-efficient and active agent to photodegrade organic pollutant, Brilliant Blue R, using energy from sunlight. A decrease in UV-VIS absorbance confirmed the rapid degradation of the dye.
Funder
co-financed by the European Union through the European Social Fund under the Operational Program Knowledge Education Development.
Subject
General Agricultural and Biological Sciences,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献