Nano-engineered Adsorbent for the Removal of Dyes from Water: A Review

Author:

Tara Nusrat1,Siddiqui Sharf Ilahi1,Rathi Geetanjali1,Chaudhry Saif Ali1,Inamuddin 2,Asiri Abdullah M.2

Affiliation:

1. Environmental Chemistry Research Laboratory, Department of Chemistry, Jamia Millia Islamia, New Delhi 110025, India

2. Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia

Abstract

Background: The huge quantity of wastewater, containing poisonous and hazardous dyes, is released by various industries which pollute water in direct and indirect ways. Most of the dyes are a dangerous class of water contaminants which have affected the environment drastically. Some dyes such as congo red, rhodamine B, methylene blue, methyl violet, and crystal violet are a serious threat to human beings. Remediation Method: Numerous methods are available for the removal of dyes from water. Adsorption, being a superior and eco-friendly technique, has advantage of eliminating organic dyes because of the availability of materials as adsorbents. The inexpensive nanomaterials are a more attractive choice for remediation of various dyes due to their unique properties and offer an adequate pathway to adsorb any organic dye from water to overcome its hazardous effects on human health. Results: In this review, we have discussed the latest literature related to various types of synthesis, characterization and uses as adsorbent for highly adsorptive removal capacity of nanoparticles for organic dyes. Conclusion: Adsorption technology provides an attractive pathway for further research and improvement in more efficient nanoparticles, with higher adsorption capacity, for numerous dyes to eliminate the dyes discharged from various industries and thus reduce the contamination of water. Therefore, nanocomposites may contribute to future prospective water treatment process.

Publisher

Bentham Science Publishers Ltd.

Subject

Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3