Proteins Do Not Replicate, They Precipitate: Phase Transition and Loss of Function Toxicity in Amyloid Pathologies

Author:

Ezzat KariemORCID,Sturchio Andrea,Espay Alberto J.

Abstract

Protein aggregation into amyloid fibrils affects many proteins in a variety of diseases, including neurodegenerative disorders, diabetes, and cancer. Physicochemically, amyloid formation is a phase transition process, where soluble proteins are transformed into solid fibrils with the characteristic cross-β conformation responsible for their fibrillar morphology. This phase transition proceeds via an initial, rate-limiting nucleation step followed by rapid growth. Several well-defined nucleation pathways exist, including homogenous nucleation (HON), which proceeds spontaneously; heterogeneous nucleation (HEN), which is catalyzed by surfaces; and seeding via preformed nuclei. It has been hypothesized that amyloid aggregation represents a protein-only (nucleic-acid free) replication mechanism that involves transmission of structural information via conformational templating (the prion hypothesis). While the prion hypothesis still lacks mechanistic support, it is also incompatible with the fact that proteins can be induced to form amyloids in the absence of a proteinaceous species acting as a conformational template as in the case of HEN, which can be induced by lipid membranes (including viral envelopes) or polysaccharides. Additionally, while amyloids can be formed from any protein sequence and via different nucleation pathways, they invariably adopt the universal cross-β conformation; suggesting that such conformational change is a spontaneous folding event that is thermodynamically favorable under the conditions of supersaturation and phase transition and not a templated replication process. Finally, as the high stability of amyloids renders them relatively inert, toxicity in some amyloid pathologies might be more dependent on the loss of function from protein sequestration in the amyloid state rather than direct toxicity from the amyloid plaques themselves.

Publisher

MDPI AG

Subject

General Agricultural and Biological Sciences,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3