ATP Purinergic Receptor P2X1-Dependent Suicidal NETosis Induced by Cryptosporidium parvum under Physioxia Conditions

Author:

Hasheminasab Seyed SajjadORCID,Conejeros IvánORCID,D. Velásquez ZahadyORCID,Borggrefe TilmanORCID,Gärtner Ulrich,Kamena FaustinORCID,Taubert Anja,Hermosilla CarlosORCID

Abstract

Cryptosporidiosis is a zoonotic intestinal disease that affects humans, wildlife, and neonatal cattle, caused by Cryptosporidium parvum. Neutrophil extracellular traps (NETs), also known as suicidal NETosis, are a powerful and ancient innate effector mechanism by which polymorphonuclear neutrophils (PMN) battle parasitic organisms like protozoa and helminths. Here, C. parvum oocysts and live sporozoites were utilized to examine suicidal NETosis in exposed bovine PMN under both 5% O2 (physiological conditions within small intestinal tract) and 21% O2 (normal hyperoxic conditions in research facilities). Both sporozoites and oocysts induced suicidal NETosis in exposed PMN under physioxia (5% O2) and hyperoxia (21% O2). Besides, C. parvum-induced suicidal NETosis was affirmed by total break of PMN, co-localization of extracellular DNA decorated with pan-histones (H1A, H2A/H2B, H3, H4) and neutrophil elastase (NE) by means of confocal- and immunofluorescence microscopy investigations. C. parvum-triggered NETs entrapped sporozoites and impeded sporozoite egress from oocysts covered by released NETs, according to scanning electron microscopy (SEM) examination. Live cell 3D-holotomographic microscopy analysis visualized early parasite-induced PMN morphological changes, such as the formation of membrane protrusions towards C. parvum while undergoing NETosis. Significant reduction of C. parvum-induced suicidal NETosis was measured after PMN treatments with purinergic receptor P2X1 inhibitor NF449, under both oxygen circumstances, this receptor was found to play a critical role in the induction of NETs, indicating its importance. Similarly, inhibition of PMN glycolysis via 2-deoxy glucose treatments resulted in a reduction of C. parvum-triggered suicidal NETosis but not significantly. Extracellular acidification rates (ECAR) and oxygen consumption rates (OCR) were not increased in C. parvum-exposed cells, according to measurements of PMN energetic state. Treatments with inhibitors of plasma membrane monocarboxylate transporters (MCTs) of lactate failed to significantly reduce C. parvum-mediated NET extrusion. Concerning Notch signaling, no significant reduction was detected after PMN treatments with two specific Notch inhibitors, i.e., DAPT and compound E. Overall, we here describe for the first time the pivotal role of ATP purinergic receptor P2X1 in C. parvum-mediated suicidal NETosis under physioxia (5% O2) and its anti-cryptosporidial properties.

Funder

Federal Ministry of Education and Research

Publisher

MDPI AG

Subject

General Agricultural and Biological Sciences,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3