MCT-Dependent Cryptosporidium parvum-Induced Bovine Monocyte Extracellular Traps (METs) under Physioxia

Author:

Hasheminasab Seyed Sajjad1ORCID,Conejeros Iván1ORCID,Gärtner Ulrich2,Kamena Faustin3ORCID,Taubert Anja1ORCID,Hermosilla Carlos R.1ORCID

Affiliation:

1. Institute of Parasitology, Biomedical Research Center Seltersberg (BFS), Justus Liebig University Giessen, 35392 Giessen, Germany

2. Institute of Anatomy and Cell Biology, Justus Liebig University Giessen, 35392 Giessen, Germany

3. Laboratory for Molecular Parasitology, Department of Microbiology and Parasitology, University of Buea, Buea P.O. Box 63, Cameroon

Abstract

The apicomplexan protozoan parasite Cryptosporidium parvum is responsible for cryptosporidiosis, which is a zoonotic intestinal illness that affects newborn cattle, wild animals, and people all over the world. Mammalian monocytes are bone marrow-derived myeloid leukocytes with important defense effector functions in early host innate immunity due to their ATP purinergic-, CD14- and CD16-receptors, adhesion, migration and phagocytosis capacities, inflammatory, and anti-parasitic properties. The formation of monocyte extracellular traps (METs) has recently been reported as an additional effector mechanism against apicomplexan parasites. Nonetheless, nothing is known in the literature on METs extrusion neither towards C. parvum-oocysts nor sporozoites. Herein, ATP purinergic receptor P2X1, glycolysis, Notch signaling, and lactate monocarboxylate transporters (MCT) were investigated in C. parvum-exposed bovine monocytes under intestinal physioxia (5% O2) and hyperoxia (21% O2; most commonly used hyperoxic laboratory conditions). C. parvum-triggered suicidal METs were confirmed by complete rupture of exposed monocytes, co-localization of extracellular DNA with myeloperoxidase (MPO) and histones (H1-H4) via immunofluorescence- and confocal microscopy analyses. C. parvum-induced suicidal METs resulted not only in oocyst entrapment but also in hindered sporozoite mobility from oocysts according to scanning electron microscopy (SEM) analyses. Early parasite-induced bovine monocyte activation, accompanied by membrane protrusions toward C. parvum-oocysts/sporozoites, was unveiled using live cell 3D-holotomographic microscopy analysis. The administration of NF449, an inhibitor of the ATP purinergic receptor P2X1, to monocytes subjected to varying oxygen concentrations did not yield a noteworthy decrease in C. parvum-induced METosis. This suggests that the cell death process is not dependent on P2X1. Additionally, blockage of glycolysis in monocyte through 2-deoxy glucose (2-DG) inhibition reduced C. parvum-induced METosis but not significantly. According to monocyte energetic state measurements, C. parvum-exposed cells neither increased extracellular acidification rates (ECAR) nor oxygen consumption rates (OCR). Lactate monocarboxylate transporters (MCT) inhibitor (i.e., AR-C 141990) treatments significantly diminished C. parvum-mediated METs extrusion under physioxic (5% O2) condition. Similarly, treatment with either DAPT or compound E, two selective Notch inhibitors, exhibited no significant suppressive effects on bovine MET production. Overall, for the first time, we demonstrate C. parvum-mediated METosis as P2X1-independent but as an MCT-dependent defense mechanism under intestinal physioxia (5% CO2) conditions. METs findings suggest anti-cryptosporidial effects through parasite entrapment and inhibition of sporozoite excystation.

Funder

Federal Ministry of Education and Research

LOEWE Centre DRUID

Publisher

MDPI AG

Subject

General Agricultural and Biological Sciences,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3