Abstract
A species-specific quantitative PCR (qPCR) assay using environmental DNA (eDNA) is a promising tool for both qualitative and quantitative analyses of target species directly from water samples. Despite its reliability, an eDNA-based qPCR assay pipeline has not yet developed to monitor salmon species inhabiting Korean waters, which have been rapidly decreasing. We designed species-specific primers for four Oncorhynchus species inhabiting the eastern coastal waters along the Korean Peninsula. These include primers for two native species (Oncorhynchus keta and O. masou) and two that were introduced (O. mykiss and O. kisutch). The limit of detection and limit of quantification for the four qPCR assays ranged from 4.11 to 10.38 copies and from 30 to 81 copies, respectively, indicating a high sensitivity and specificity across all four species. Following optimization, the qPCR assays were used for the quantitative analyses of the four Oncorhynchus species in the Yangyangnamdae River during the spawning and non-spawning seasons in the year 2019–2020, one of the main rivers where salmon migrate during the spawning season in Korea. The raw copy numbers in all of the examined samples were normalized by PCR inhibition rates to standardize and compare with other studies. Among the four Oncorhynchus species examined, the eDNA concentration of O. keta increased significantly (63.60-fold, p < 0.0001) during the spawning season (November) compared with that in the non-spawning season (March), suggesting that O. keta is the main salmon species migrating through the Yangyangnamdae River. In contrast, we did not detect any differences in eDNA concentration for the other three Oncorhynchus species between the spawning and non-spawning seasons, indicating that their presence does not alter during the year. Their eDNA concentration is also relatively low compared to O. keta, which suggests that small numbers of these three species are present in the river. Overall, these newly developed qPCR assays represent useful monitoring tools for the management of four salmon species in Korean waters.
Funder
National Research Foundation of Korea (NRF), the Ministry of Education
Subject
General Agricultural and Biological Sciences,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献