Affiliation:
1. U.S. Geological Survey Alaska Science Center 4210 University Drive Anchorage AK 99508 USA
2. U.S. Geological Survey Alaska Science Center Anchorage AK USA
3. U.S. Fish and Wildlife Service Anchorage AK USA
4. University of Alaska Museum Fairbanks AK USA
Abstract
The development and application of approaches to detect and quantify environmental DNA (eDNA) have potential to improve our understanding of the distribution, abundance, and health of Atlantic Salmon Salmo salar and Pacific salmon Oncorhynchus spp. Here, we review 61 articles focusing on eDNA applications pertaining to salmon occupying natural habitat and aquaculture facilities in the context of advances, opportunities, and challenges. Given recent advances, eDNA now serves as a useful tool for detecting Atlantic Salmon and Pacific salmon and understanding threats to the health of fish and their habitats. Opportunities exist to apply sensitive and minimally invasive eDNA approaches to detect fish and assess fish habitat, assess range expansions of salmon and salmon pathogens, and detect invasive species that may threaten salmon health and abundance. Near real‐time eDNA detection and quantification approaches to inform fisheries management may be on the horizon. Challenges limiting the widespread application of eDNA approaches for informing salmon management include accounting for the many factors affecting detection and quantification of eDNA, limits of data for deriving inference, and expense. Through continued development and refinement, eDNA approaches are anticipated to become increasingly available to, and utilized by, managers of Atlantic Salmon and Pacific salmon fisheries.
Subject
Nature and Landscape Conservation,Aquatic Science
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献