New Bacillus subtilis Strains Isolated from Prosopis glandulosa Rhizosphere for Suppressing Fusarium Spp. and Enhancing Growth of Gossypium hirsutum L.

Author:

Abdelmoteleb Ali,Moreno-Ramírez Lizbeth,Valdez-Salas BenjamínORCID,Seleiman Mahmoud F.ORCID,El-Hendawy SalahORCID,Aldhuwaib Khalid J.,Alotaibi Majed,González-Mendoza Daniel

Abstract

Rhizobacteria from desert plants can alleviate biotic stress and suppress plant diseases, and consequently can enhance plant growth. Therefore, the current study was performed to isolate and identify Prosopis glandulosa-associating rhizobacteria based on their antagonistic activity against Fusarium species and plant growth-promoting properties. Three bacterial isolates were identified as Bacillus subtilis: LDA-1, LDA-2, and LDA-3. The molecular analysis suggests the biosynthesis of the bacteriocins subtilisin and subtilosin, as well as the lipopeptide iturin, by these strains. In addition, the antagonistic study by dual-culture assay showed a high efficacy of all B. subtilis strains against phytopathogenic fungi (Fusarium nygamai, F. equisseti, F. solani, F. solani ICADL1, and F. oxysporum ICADL2) with inhibition percentages ranging from 43.3 to 83.5% in comparison to the control. Moreover, atomic force microscopy (AFM) analysis showed significant differences in the cell wall topography of the F. solani ICADL1 among the treated mycelia and untreated control. As a result, these three B. subtilis strains were used as bioinoculants for cotton seedlings infected by F. solani ICADL1 in pot trials, and the results revealed that the bacterial inoculations as an individual or combined with F. solani ICADL1 significantly improved cotton root and stem length, lateral roots, indole acetic acid (IAA), and gibberellic acid (GA3) contents, as well as increased antioxidants, flavonoids, and phenols in comparison to those obtained from healthy and infected control plants. In conclusion, the three bacterial strains of B. subtilis (i.e., LDA-1, LDA-2, and LDA-3) are considered promising tools as biocontrol agents for F. solani and cotton growth promoters, and consequently can be used as bio-ertilizer in sustainable agriculture systems.

Funder

Deputyship for Research & Innovation, Ministry of Education in Saudi Arabia

Publisher

MDPI AG

Subject

General Agricultural and Biological Sciences,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3