Temperature–Humidity-Dependent Wind Effects on Physiological Heat Strain of Moderately Exercising Individuals Reproduced by the Universal Thermal Climate Index (UTCI)

Author:

Bröde Peter1ORCID,Kampmann Bernhard2ORCID

Affiliation:

1. Leibniz Research Centre for Working Environment and Human Factors at TU Dortmund (IfADo), Ardeystrasse 67, D-44139 Dortmund, Germany

2. Department of Occupational Health Science, School of Mechanical Engineering and Safety Engineering, University of Wuppertal, Gaußstraße 20, D-42119 Wuppertal, Germany

Abstract

Increasing wind speed alleviates physiological heat strain; however, health policies have advised against using ventilators or fans under heat wave conditions with air temperatures above the typical skin temperature of 35 °C. Recent research, mostly with sedentary participants, suggests mitigating the effects of wind at even higher temperatures, depending on the humidity level. Our study aimed at exploring and quantifying whether such results are transferable to moderate exercise levels, and whether the Universal Thermal Climate Index (UTCI) reproduces those effects. We measured heart rates, core and skin temperatures, and sweat rates in 198 laboratory experiments completed by five young, semi-nude, heat-acclimated, moderately exercising males walking the treadmill at 4 km/h on the level for three hours under widely varying temperature–humidity combinations and two wind conditions. We quantified the cooling effect of increasing the wind speed from 0.3 to 2 m/s by fitting generalized additive models predicting the physiological heat stress responses depending on ambient temperature, humidity, and wind speed. We then compared the observed wind effects to the assessment performed by the UTCI. Increasing the wind speed lowered the physiological heat strain for air temperatures below 35 °C, but also for higher temperatures with humidity levels above 2 kPa water vapor pressure concerning heart rate and core temperature, and 3 kPa concerning skin temperature and sweat rate, respectively. The UTCI assessment of wind effects correlated positively with the observed changes in physiological responses, showing the closest agreement (r = 0.9) for skin temperature and sweat rate, where wind is known for elevating the relevant convective and evaporative heat transfer. These results demonstrate the potential of the UTCI for adequately assessing sustainable strategies for heat stress mitigation involving fans or ventilators, depending on temperature and humidity, for moderately exercising individuals.

Publisher

MDPI AG

Subject

General Agricultural and Biological Sciences,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3