Application of Statistical Learning Algorithms in Thermal Stress Assessment in Comparison with the Expert Judgment Inherent to the Universal Thermal Climate Index (UTCI)

Author:

Bröde Peter1ORCID,Fiala Dusan2,Kampmann Bernhard3ORCID

Affiliation:

1. Leibniz Research Centre for Working Environment and Human Factors at TU Dortmund (IfADo), Ardeystrasse 67, 44139 Dortmund, Germany

2. ErgonSim–Human Thermal Modelling, Robert-Bosch-Str. 20, 72469 Messstetten, Germany

3. Department of Occupational Health Science, School of Mechanical Engineering and Safety Engineering, University of Wuppertal, 42119 Wuppertal, Germany

Abstract

This study concerns the application of statistical learning (SL) in thermal stress assessment compared to the results accomplished by an international expert group when developing the Universal Thermal Climate Index (UTCI). The performance of diverse SL algorithms in predicting UTCI equivalent temperatures and in thermal stress assessment was assessed by root mean squared errors (RMSE) and Cohen’s kappa. A total of 48 predictors formed by 12 variables at four consecutive 30 min intervals were obtained as the output of an advanced human thermoregulation model, calculated for 105,642 conditions from extreme cold to extreme heat. Random forests and k-nearest neighbors closely predicted UTCI equivalent temperatures with an RMSE about 3 °C. However, clustering applied after dimension reduction (principal component analysis and t-distributed stochastic neighbor embedding) was inadequate for thermal stress assessment, showing low to fair agreement with the UTCI stress categories (Cohen’s kappa < 0.4). The findings of this study will inform the purposeful application of SL in thermal stress assessment, where they will support the biometeorological expert.

Funder

EU framework program Horizon Europe

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3