Affiliation:
1. Department of Agricultural Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2R3, Canada
Abstract
This study aims to investigate the effect of tripeptide IRW on the local renin–angiotensin system (RAS), particularly angiotensin-converting enzyme 2 (ACE2), and their association with signaling pathways in the aorta of a high-fat-diet (HFD)-induced insulin-resistant mouse model. C57BL/6 mice were fed HFD (45% of the total calories) for six weeks, and then IRW was added to the diet (45 mg/kg body weight (BW)) for another eight weeks. ACE2 mRNA expression and protein level(s) were increased (p < 0.05), while angiotensin II receptor (AT1R) and angiotensin-converting enzyme (ACE) protein abundance was significantly reduced (p < 0.05) in the aorta of HFD mice treated by IRW. IRW supplementation also improved glucose transporter 4 (GLUT4) abundance (p < 0.05) alongside AMP-activated protein kinase (AMPK) (p < 0.05), Sirtuin 1 (SIRT1) (p < 0.05), and endothelial nitric oxide synthase (eNOS) (p < 0.05) expression. IRW downregulated the levels of endothelin 1 (ET-1) and p38 mitogen-activated protein kinases (p38 MAPK, p < 0.05). Furthermore, the levels of AMPK and eNOS in vascular smooth muscle cells (VSMCs) were significantly reduced in ACE2 knockdown cells treated with or without IRW (p < 0.01). In conclusion, this study provided new evidence of the regulatory role of IRW on the aortic ACE2 against metabolic syndrome (MetS) in an HFD-induced insulin-resistant model.
Funder
Natural Sciences and Engineering Research Council of Canada
Subject
General Agricultural and Biological Sciences,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology