Combined Use of Sentinel-1 SAR and Landsat Sensors Products for Residual Soil Moisture Retrieval over Agricultural Fields in the Upper Blue Nile Basin, Ethiopia

Author:

Ayehu GetachewORCID,Tadesse TsegayeORCID,Gessesse BerhanORCID,Yigrem Yibeltal,M. Melesse AssefaORCID

Abstract

The objective of this paper is to investigate the potential of sentinel-1 SAR sensor products and the contribution of soil roughness parameters to estimate volumetric residual soil moisture (RSM) in the Upper Blue Nile (UBN) basin, Ethiopia. The backscatter contribution of crop residue water content was estimated using Landsat sensor product and the water cloud model (WCM). The surface roughness parameters were estimated from the Oh and Baghdadi models. A feed-forward artificial neural network (ANN) method was tested for its potential to translate SAR backscattering and surface roughness input variables to RSM values. The model was trained for three inversion configurations: (i) SAR backscattering from vertical transmit and vertical receive (SAR VV) polarization only; (ii) using SAR VV and the standard deviation of surface heights ( h r m s ), and (iii) SAR VV, h r m s , and optimal surface correlation length ( l e f f ). Field-measured volumetric RSM data were used to train and validate the method. The results showed that the ANN soil moisture estimation model performed reasonably well for the estimation of RSM using the single input variable of SAR VV data only. The ANN prediction accuracy was slightly improved when SAR VV and the surface roughness parameters ( h r m s and l e f f ) were incorporated into the prediction model. Consequently, the ANN’s prediction accuracy with root mean square error (RMSE) = 0.035 cm3/cm3, mean absolute error (MAE) = 0.026 cm3/cm3, and r = 0.73 was achieved using the third inversion configuration. The result implies the potential of Sentinel-1 SAR data to accurately retrieve RSM content over an agricultural site covered by stubbles. The soil roughness parameters are also potentially an important variable to soil moisture estimation using SAR data although their contribution to the accuracy of RSM prediction is slight in this study. In addition, the result highlights the importance of combining Sentinel-1 SAR and Landsat images based on an ANN approach for improving RSM content estimations over crop residue areas.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3