Abstract
In spite of the large-scale production and widespread distribution of vaccines and antiviral drugs, viruses remain a prominent human disease. Recently, the discovery of antiviral peptides (AVPs) has become an influential antiviral agent due to their extraordinary advantages. With the avalanche of newly-found peptide sequences in the post-genomic era, there is a great demand to develop a sequence-based predictor for timely identifying AVPs as this information is very useful for both basic research and drug development. In this study, we propose a novel sequence-based meta-predictor with an effective feature representation, called Meta-iAVP, for the accurate prediction of AVPs from given peptide sequences. Herein, the effective feature representation was extracted from a set of prediction scores derived from various machine learning algorithms and types of features. To the best of our knowledge, the model proposed herein represents the first meta-based approach for the prediction of AVPs. An overall accuracy and Matthews correlation coefficient of 95.20% and 0.90, respectively, was achieved from the independent test set on an objective benchmark dataset. Comparative analysis suggested that Meta-iAVP was superior to that of existing methods and therefore represents a useful tool for AVP prediction. Finally, in an effort to facilitate high-throughput prediction of AVPs, the model was deployed as the Meta-iAVP web server and is made freely available online at http://codes.bio/meta-iavp/ where users can submit query peptide sequences for determining the likelihood of whether or not these peptides are AVPs.
Subject
Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis
Cited by
95 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献