Intelligent Diagnosis of Rolling Element Bearing Based on Refined Composite Multiscale Reverse Dispersion Entropy and Random Forest

Author:

Liu Aiqiang,Yang Zuye,Li Hongkun,Wang Chaoge,Liu Xuejun

Abstract

Rolling bearings are the vital components of large electromechanical equipment, thus it is of great significance to develop intelligent fault diagnoses for them to improve equipment operation reliability. In this paper, a fault diagnosis method based on refined composite multiscale reverse dispersion entropy (RCMRDE) and random forest is developed. Firstly, rolling bearing vibration signals are adaptively decomposed by variational mode decomposition (VMD), and then the RCMRDE values of 25 scales are calculated for original signal and each decomposed component as the initial feature set. Secondly, based on the joint mutual information maximization (JMIM) algorithm, the top 15 sensitive features are selected as a new feature set and feed into random forest model to identify bearing health status. Finally, to verify the effectiveness and superiority of the presented method, actual data acquisition and analysis are performed on the bearing fault diagnosis experimental platform. These results indicate that the presented method can precisely diagnose bearing fault types and damage degree, and the average identification accuracy rate is 97.33%. Compared with the refine composite multiscale dispersion entropy (RCMDE) and multiscale dispersion entropy (MDE), the fault diagnosis accuracy is improved by 2.67% and 8.67%, respectively. Furthermore, compared with the RCMRDE method without VMD decomposition, the fault diagnosis accuracy is improved by 3.67%. Research results prove that a better feature extraction technique is proposed, which can effectively overcome the deficiency of existing entropy and significantly enhance the ability of fault identification.

Funder

National Key Research and Development Program of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3