Abstract
Intelligent fault diagnosis is a promising tool for processing mechanical big data. It can quickly and efficiently process the collected signals and provide accurate diagnosis results. However, rotating machinery often works under various speed conditions, which makes it difficult to extract fault features. Inspired by speech recognition, the nuisance attribute projection method in speech recognition is introduced into fault diagnosis to solve the problem of feature extraction in variable speed signals. Based on the idea of unsupervised feature learning, the loss function of nuisance attribute projection is added to the loss function of convolutional neural network (CNN) to learn fault features from original data. Health status is classified according to the learned characteristics and projection matrix P. A special designed bearing dataset is employed to verify the effectiveness of the proposed method. The results show that the proposed method has a higher accuracy and a simpler framework, which is superior to the existing methods in bearing fault diagnosis.
Funder
National Natural Science Foundation of China
National science and technology major projects
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献