A Comparative Study of Deep CNN in Forecasting and Classifying the Macronutrient Deficiencies on Development of Tomato Plant

Author:

Tran Trung-Tin,Choi Jae-Won,Le Thien-Tu,Kim Jong-Wook

Abstract

During the process of plant growth, such as during the flowering stages and fruit development, the plants need to be provided with the various minerals and nutrients to grow. Nutrient deficiency is the cause of serious diseases in plant growth, affecting crop yield. In this article, we employed artificial neural network models to recognize, classify, and predict the nutritional deficiencies occurring in tomato plants (Solanum lycopersicum L.). To classify and predict the different macronutrient deficiencies in the cropping process, this paper handles the captured images of the macronutrient deficiency. This deficiency during the fruiting and leafing phases of tomato plant are based on a deep convolutional neural network (CNN). A total of 571 images were captured with tomato leaves and fruits containing the crop species at the growth stage. Among all images, 80% (461 captured images) were used for the training dataset and 20% (110 captured images) were applied for the validation dataset. In this study, we provide an analysis of two different model architectures based on convolutional neural network for classifying and predicting the nutrient deficiency symptoms. For instance, Inception-ResNet v2 and Autoencoder with the captured images of tomato plant growth under the greenhouse conditions. Moreover, a major type of statistical structure, namely Ensemble Averaging, was applied with two aforementioned predictive models to increase the accuracy of predictive validation. Three mineral nutrients, i.e., Calcium/Ca2+, Potassium/K+, and Nitrogen/N, are considered for use in evaluating the nutrient status in the development of tomato plant with these models. The aim of this study is to predict the nutrient deficiency accurately in order to increase crop production and prevent the emergence of tomato pathology caused by lack of nutrients. The predictive performance of the three models in this paper are validated, with the accuracy rates of 87.273% and 79.091% for Inception-ResNet v2 and Autoencoder, respectively, and with 91% validity using Ensemble Averaging.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3