Wind Turbine Damage Equivalent Load Assessment Using Gaussian Process Regression Combining Measurement and Synthetic Data

Author:

Haghi Rad1ORCID,Stagg Cassidy1ORCID,Crawford Curran1ORCID

Affiliation:

1. Department of Mechanical Engineering, Institute for Integrated Energy Systems, University of Victoria, Victoria, BC V8P 5C2, Canada

Abstract

Assessing the structural health of operational wind turbines is crucial, given their exposure to harsh environments and the resultant impact on longevity and performance. However, this is hindered by the lack of data in commercial machines and accurate models based on manufacturers’ proprietary design data. To overcome these challenges, this study focuses on using Gaussian Process Regression (GPR) to evaluate the loads in wind turbines using a hybrid approach. The methodology involves constructing a hybrid database of aero-servo-elastic simulations, integrating publicly available wind turbine models, tools and Supervisory Control and Data Acquisition (SCADA) measurement data. Then, constructing GPR models with hybrid data, the prediction is validated against the hybrid and SCADA measurements. The results, derived from a year of SCADA data, demonstrate the GPR model’s effectiveness in interpreting and predicting turbine performance metrics. The findings of this study underscore the potential of GPR for the health and reliability assessment and management of wind turbine systems.

Funder

Natural Sciences and Engineering Research Council of Canada

MiTACS

Publisher

MDPI AG

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3