NOx Emission Prediction for Heavy-Duty Diesel Vehicles Based on Improved GWO-BP Neural Network

Author:

Wang Zhihong12,Feng Kai12

Affiliation:

1. School of Automotive Engineering, Wuhan University of Technology, Wuhan 430070, China

2. Hubei Key Laboratory of Advanced Technology for Automotive Components, Wuhan University of Technology, Wuhan 430070, China

Abstract

NOx is one of the main sources of pollutants for motor vehicles. Nowadays, many diesel vehicle manufacturers may use emission-cheating equipment to make the vehicles meet compliance standards during emission tests, but the emissions will exceed the standards during actual driving. In order to strengthen the supervision of diesel vehicles for emission monitoring, this article intends to establish a model that can predict the transient emission characteristics of heavy-duty diesel vehicles and provide a solution for remote online monitoring of diesel vehicles. This paper refers to the heavy-duty vehicle National VI emission regulations and uses vehicle-mounted portable emission testing equipment (PEMS) to conduct actual road emission tests on a certain country’s VI heavy-duty diesel vehicles. Then, it proposes a new feature engineering processing method that uses gray correlation analysis and principal component analysis to eliminate invalid data and reduce the dimensionality of the aligned data, which facilitates the rapid convergence of the model during the training process. Then, a double-hidden-layer BP (Back propagation) neural network was established, and the improved gray wolf algorithm was used to optimize the threshold and weight of the neural network, and a heavy-duty diesel vehicle NOx emission prediction model was obtained. Through the training of the network, the root mean square error (RMSE) of the improved model on the test set between the predicted value and the true value is 1.9144 (mg/s), and the coefficient of determination (R2) is 0.87024. Compared with single-hidden-layer network and double-hidden-layer BP neural network models, the accuracy of the model has been improved. The model can well predict the actual road NOx emissions of heavy-duty diesel vehicles.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference36 articles.

1. Ministry of Ecology and Environment the People’s Republic of China (2024, January 05). China Mobile Source Environmental Management Annual Report, Available online: http://www.gov.cn/xinwen/2021-09/11/content_5636764.htm.

2. Fuel consumption and emission performance from light-duty conventional/hybrid-electric vehicles over different cycles and real driving tests;Wang;Fuel,2020

3. Study on exhaust emission test of diesel vehicles based on PEMS;Guor;Procedia Comput. Sci.,2020

4. Study on pollutant emission characteristics of different types of diesel vehicles during actual road cold start;Tang;Sci. Total Environ.,2022

5. Comparison of fine particles emissions of light-duty gasoline vehicles from chassis dynamometer tests and on-road measurements;Li;Atmos. Environ.,2013

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3