Bacterial Number and Genetic Diversity in a Permafrost Peatland (Western Siberia): Testing a Link with Organic Matter Quality and Elementary Composition of a Peat Soil Profile

Author:

Aksenov Andrey S.ORCID,Shirokova Liudmila S.,Kisil Oksana Ya.,Kolesova Sofiia N.,Lim Artem G.ORCID,Kuzmina Darya,Pouillé Sophie,Alexis Marie A.,Castrec-Rouelle MaryseORCID,Loiko Sergey V.ORCID,Pokrovsky Oleg S.ORCID

Abstract

Permafrost peatlands, containing a sizable amount of soil organic carbon (OC), play a pivotal role in soil (peat) OC transformation into soluble and volatile forms and greatly contribute to overall natural CO2 and CH4 emissions to the atmosphere under ongoing permafrost thaw and soil OC degradation. Peat microorganisms are largely responsible for the processing of this OC, yet coupled studies of chemical and bacterial parameters in permafrost peatlands are rather limited and geographically biased. Towards testing the possible impact of peat and peat pore water chemical composition on microbial population and diversity, here we present results of a preliminary study of the western Siberia permafrost peatland discontinuous permafrost zone. The quantitative evaluation of microorganisms and determination of microbial diversity along a 100 cm thick peat soil column, which included thawed and frozen peat and bottom mineral horizon, was performed by RT-PCR and 16S rRNA gene-based metagenomic analysis, respectively. Bacteria (mainly Proteobacteria, Acidobacteria, Actinobacteria) strongly dominated the microbial diversity (99% sequences), with a negligible proportion of archaea (0.3–0.5%). There was a systematic evolution of main taxa according to depth, with a maximum of 65% (Acidobacteria) encountered in the active layer, or permafrost boundary (50–60 cm). We also measured C, N, nutrients and ~50 major and trace elements in peat (19 samples) as well as its pore water and dispersed ice (10 samples), sampled over the same core, and we analyzed organic matter quality in six organic and one mineral horizon of this core. Using multiparametric statistics (PCA), we tested the links between the total microbial number and 16S rRNA diversity and chemical composition of both the solid and fluid phase harboring the microorganisms. Under climate warming and permafrost thaw, one can expect a downward movement of the layer of maximal genetic diversity following the active layer thickening. Given a one to two orders of magnitude higher microbial number in the upper (thawed) layers compared to bottom (frozen) layers, an additional 50 cm of peat thawing in western Siberia may sizably increase the total microbial population and biodiversity of active cells.

Funder

Government of the Russian Federation

Publisher

MDPI AG

Subject

Nature and Landscape Conservation,Agricultural and Biological Sciences (miscellaneous),Ecological Modeling,Ecology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3