Uncertainty Analysis for Image-Based Streamflow Measurement: The Influence of Ground Control Points

Author:

Liu Wen-ChengORCID,Huang Wei-Che,Young Chih-Chieh

Abstract

Large-scale particle image velocimetry (LSPIV) provides a cost-effective, rapid, and secure monitoring tool for streamflow measurements. However, surveys of ground control points (GCPs) might affect the camera parameters through the solution of collinearity equations and then impose uncertainty on the measurement results. In this paper, we explore and present an uncertainty analysis for image-based streamflow measurements with the main focus on the ground control points. The study area was Yufeng Creek, which is upstream of the Shimen Reservoir in Northern Taiwan. A monitoring system with dual cameras was set up on the platform of a gauge station to measure the surface velocity. To evaluate the feasibility and accuracy of image-based LSPIV, a comparison with the conventional measurement using a flow meter was conducted. Furthermore, the degree of uncertainty in LSPIV streamflow measurements influenced by the ground control points was quantified using Monte Carlo simulation (MCS). Different operations (with survey times from one to nine) and standard errors (30 mm, 10 mm, and 3 mm) during GCP measurements were considered. Overall, the impacts in the case of single GCP measurement are apparent, i.e., a shifted and wider confidence interval. This uncertainty can be alleviated if the coordinates of the control points are measured and averaged with three repetitions. In terms of the standard errors, the degrees of uncertainty (i.e., normalized confidence intervals) in the streamflow measurement were 20.7%, 12.8%, and 10.7%. Given a smaller SE in GCPs, less uncertain estimations of the river surface velocity and streamflow from LSPIV could be obtained.

Funder

Ministry of Science and Technology (MOST), Taiwan

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3