Optical Tracking Velocimetry (OTV): Leveraging Optical Flow and Trajectory-Based Filtering for Surface Streamflow Observations

Author:

Tauro Flavia,Tosi Fabio,Mattoccia StefanoORCID,Toth Elena,Piscopia Rodolfo,Grimaldi Salvatore

Abstract

Nonintrusive image-based methods have the potential to advance hydrological streamflow observations by providing spatially distributed data at high temporal resolution. Due to their simplicity, correlation-based approaches have until recent been preferred to alternative image-based approaches, such as optical flow, for camera-based surface flow velocity estimate. In this work, we introduce a novel optical flow scheme, optical tracking velocimetry (OTV), that entails automated feature detection, tracking through the differential sparse Lucas-Kanade algorithm, and then a posteriori filtering to retain only realistic trajectories that pertain to the transit of actual objects in the field of view. The method requires minimal input on the flow direction and camera orientation. Tested on two image data sets collected in diverse natural conditions, the approach proved suitable for rapid and accurate surface flow velocity estimations. Five different feature detectors were compared and the features from accelerated segment test (FAST) resulted in the best balance between the number of features identified and successfully tracked as well as computational efficiency. OTV was relatively insensitive to reduced image resolution but was impacted by acquisition frequencies lower than 7–8 Hz. Compared to traditional correlation-based techniques, OTV was less affected by noise and surface seeding. In addition, the scheme is foreseen to be applicable to real-time gauge-cam implementations.

Funder

Regione Emilia Romagna

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 62 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3