Joint Geoeffectiveness and Arrival Time Prediction of CMEs by a Unified Deep Learning Framework

Author:

Fu HuiyuanORCID,Zheng YuchaoORCID,Ye YudongORCID,Feng Xueshang,Liu Chaoxu,Ma Huadong

Abstract

Fast and accurate prediction of the geoeffectiveness of coronal mass ejections (CMEs) and the arrival time of the geoeffective CMEs is urgent, to reduce the harm caused by CMEs. In this paper, we present a new deep learning framework based on time series of satellites’ optical observations that can give both the geoeffectiveness and the arrival time prediction of the CME events. It is the first time combining these two demands in a unified deep learning framework with no requirement of manually feature selection and get results immediately. The only input of the deep learning framework is the time series images from synchronized solar white-light and EUV observations. Our framework first uses the deep residual network embedded with the attention mechanism to extract feature maps for each observation image, then fuses the feature map of each image by the feature map fusion module and determines the geoeffectiveness of CME events. For the geoeffective CME events, we further predict its arrival time by the deep residual regression network based on group convolution. In order to train and evaluate our proposed framework, we collect 2400 partial-/full-halo CME events and its corresponding images from 1996 to 2018. The F1 score and Accuracy of the geoeffectiveness prediction can reach 0.270% and 75.1%, respectively, and the mean absolute error of the arrival time prediction is only 5.8 h, which are both significantly better than well-known deep learning methods and can be comparable to, or even better than, the best performance of traditional methods.

Funder

National Natural Science Foundation of China

Higher Education Discipline Innovation Project

the Funds for Creative Research Groups of China

Beijing Nova Program

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3