An Algorithm for the Determination of Coronal Mass Ejection Kinematic Parameters Based on Machine Learning

Author:

Lin 林 Rongpei 荣沛ORCID,Yang 杨 Yi 易ORCID,Shen 沈 Fang 芳ORCID,Pi GilbertORCID,Li 李 Yucong 雨淙

Abstract

Abstract Coronal mass ejections (CMEs) constitute the major source of severe space weather events, with the potential to cause enormous damage to humans and spacecraft in space. It is becoming increasingly important to detect and track CMEs, since there are more and more space activities and facilities. We have developed a new algorithm to automatically derive a CME’s kinematic parameters based on machine learning. Our method consists of three steps: recognition, tracking, and the determination of parameters. First, we train a convolutional neural network to classify images from Solar and Heliospheric Observatory Large Angle Spectrometric Coronagraph observations into two categories, containing CME(s) or not. Next, we apply the principal component analysis algorithm and Otsu’s method to acquire binary-labeled CME regions. Then, we employ the track-match algorithm to track a CME’s motion in time-series images and finally determine the CME’s kinematic parameters, e.g., velocity, angular width, and central position angle. The results of four typical CME events with different morphological characteristics are presented and compared with a manual CME catalog and several automatic CME catalogs. Our algorithm shows some advantages in the recognition of CME structure and the accuracy of the kinematic parameters. This algorithm can be helpful for real-time CME warnings and predictions. In the future, this algorithm is capable of being applied to CME initialization in magnetohydrodynamic simulations to study the propagation characteristics of real CME events and to provide more efficient predictions of CMEs’ geoeffectiveness.

Funder

MOST ∣ National Key Research and Development Program of China

MOST ∣ National Natural Science Foundation of China

Publisher

American Astronomical Society

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3