Errors of Airborne Bathymetry LiDAR Detection Caused by Ocean Waves and Dimension-Based Laser Incidence Correction

Author:

Guo Kai,Li Qingquan,Mao QingzhouORCID,Wang ChishengORCID,Zhu Jiasong,Liu YanxiongORCID,Xu WenxueORCID,Zhang Dejin,Wu Anlei

Abstract

Ocean waves are a vital environmental factor that affects the accuracy of airborne laser bathymetry (ALB) systems. As the regional water surface undulates with randomness, the laser propagation direction through the air–water surface will change and impact the underwater topographic result from the ALB system, especially for the small laser divergence system. However, the natural ocean surface changes rapidly over time, and uneven ocean surface point clouds from ALB scanning will cause an uncertain estimation of the laser propagation direction; therefore, a self-adaptive correction method based on the characteristics of the partial wave surface is key to improving the accuracy and applicability of the ALB system. In this paper, we focused on the issues of spatial position deviation caused by surface waves and position correction of the underwater laser footprint, and the dimension-based adaptive method is applied to attempt to correct the laser incidence angle. Simulation experiments and analysis of the actual measurement data from different ALB systems verified that the method can effectively suppress the influence of ocean waves. Furthermore, the inversion result of sea surface inclination changes is consistent with the surface wind wave reanalysis products. Based on the laser underwater propagation model in the strategy, we also quantitatively analyzed the influence of surface waves on laser bathymetry, which can guide the operation selection and data processing of the ALB system at specific water depths and under dynamic ocean conditions.

Funder

Modeling of underwater layered transmission and optimization of adjustment in strip for single wavelength airborne lidar bathymetry, National Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3