Thin scattering layers observed by airborne lidar

Author:

Churnside James H.1,Donaghay Percy L.2

Affiliation:

1. NOAA Earth System Research Laboratory, 325 Broadway, Boulder, CO 80305, USA

2. Graduate School of Oceanography, University of Rhode Island, Narragansett, RI 02874, USA

Abstract

Abstract Churnside, J. H., and Donaghay, P. L. 2009. Thin scattering layers observed by airborne lidar. – ICES Journal of Marine Science, 66: 778–789. More than 2000 km of thin (<3 m) optical scattering layers were identified in 80 000 km of airborne lidar data collected from a variety of oceanic and coastal waters. The spatial characteristics of thin layers varied dramatically from (i) those that were self-contained features consistently <3–4 m thick over their 1–12 km extent to (ii) those that were clearly parts of much longer layers that had gaps and/or regions where the layer became more intense and much thicker than the 3-m criterion. The characteristics of the lidar signal suggest that plankton was the most likely source of scattering. Examples from upwelling regions, areas with large fresh-water influx, and warm-core eddies are presented. The results are quite consistent with the characteristics observed in studies of thin plankton layers in fjords and near-coastal waters. These layers exhibit great spatial variability that is difficult to observe using traditional methods, and examples of layer perturbations by both linear and non-linear internal waves are presented. The results suggest that airborne lidar can be a powerful tool not only for detecting and mapping the spatial extent of thin scattering layers and linking their occurrence to larger scale physical processes, but also for tracking their evolution over time and guiding the ship-based sampling needed to understand their composition, dynamics, and impacts. Such a capability will be crucial in future studies designed to test the hypothesis that thin plankton layers have the spatial extent and intensity to play a key role in controlling the recruitment of fish larvae, biogeochemical cycling, trophic transfer processes, plankton biodiversity, and harmful algal bloom dynamics.

Publisher

Oxford University Press (OUP)

Subject

Ecology,Aquatic Science,Ecology, Evolution, Behavior and Systematics,Oceanography

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3