Abstract
The purpose of this investigation was to extract ferulated arabinoxylans (AX) from dried distillers’ grains with solubles (DDGS) plus to investigate their capability to form covalently cross-linked nanoparticles. AX registered 7.3 µg of ferulic acid/mg polysaccharide and molecular weight and intrinsic viscosity of 661 kDa and 149 mL/g, correspondingly. Fourier transform infrared spectroscopy (FTIR) was used to confirm the identity of this polysaccharide. AX formed laccase induced covalent gels at 1% (w/v), which registered an elastic modulus of 224 Pa and a content of FA dimers of 1.5 µg/mg polysaccharide. Scanning electron microscopy pictures of AX gels exhibited a microstructure resembling a rough honeycomb. AX formed covalently cross-linked nanoparticles (NAX) by coaxial electrospray. The average hydrodynamic diameter of NAX determined by dynamic light scattering was 328 nm. NAX presented a spherical and regular shape by transmission electron microscopy analysis. NAX may be an attractive material for pharmaceutical and biomedical applications and an option in sustainable DDGS use.
Subject
Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering
Reference51 articles.
1. Extraction and modification technology of arabinoxylans from cereal by-products: A critical review
2. Plant Cell Wall Polysaccharides in Storage Organs: Xylans (Food Applications);Saulnier,2013
3. Wheat Arabinoxylan Structure Provides Insight into Function
4. Maize bran gum: Extraction, characterization and functional properties
5. Distiller’s dried grains with solubles (DDGS) and intermediate products as starting materials in biorefinery strategies;Chatzifragkou,2018
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献