Analysis of the Influence of the Type of Belt on the Energy Consumption of Transport Processes in a Belt Conveyor

Author:

Bajda MirosławORCID,Hardygóra Monika

Abstract

Results of tests into the energy-efficiency of belt conveyor transportation systems indicate that the energy consumption of their drive mechanisms can be limited by lowering the main resistances in the conveyor. The main component of these resistances is represented by belt indentation rolling resistance. Limiting its value will allow a reduction in the amount of energy consumed by the drive mechanisms. This article presents a test rig which enables uncomplicated evaluations of such rolling resistances. It also presents the results of comparative tests performed for five steel-cord conveyor belts. The tests involved a standard belt, a refurbished belt and three energy-saving belts. As temperature significantly influences the values of belt indentation rolling resistance, the tests were performed in both positive and negative temperatures. The results indicate that when compared with the standard belt, the refurbished and the energy-efficient belts generate higher and lower indentation rolling resistances, respectively. In order to demonstrate practical advantages resulting from the use of energy-saving belts, this article also includes calculations of the power demand of a conveyor drive mechanism during one calendar year, as measured on a belt conveyor operated in a mine. The replacement of a standard belt with a refurbished belt generates a power demand higher by 4.8%, and with an energy-efficient belt—lower by 15.3%.

Funder

Polish Ministry of Science and Higher Education

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3