Abstract
Hyper-redundant manipulators with multiple degrees of freedom have special application prospects in narrow spaces, such as detection in small spaces in aerospace, rescue on-site disaster relief, etc. In order to solve the problems of complex obstacle avoidance planning and inverse solution selection of a hyper-redundant robot in a narrow space, a cubic B-spline curve based on collision-free trajectory using environmental edge information is planned. Firstly, a hyper-redundant robot composed of four pairs of double UCR (Universal-Cylindrical-Revolute) parallel mechanisms (2R1T, 2 Rotational DOFs and 1 Translation DOF) in series to realize flexible obstacle avoidance motion in narrow space is designed. The trajectory point envelope of a single UCR and the workspace of a single pair of UCR in Cartesian space based on the motion constraint boundaries of each joint are obtained. Then, the constraint control points according to the edge information of the obstacle are obtained, and the obstacle avoidance trajectory in the constrained space is planned by combining the A* algorithm and cubic B-spline algorithm. Finally, a variety of test scenarios are built to verify the obstacle avoidance planning algorithm. The results show that the proposed algorithm reduces the computational complexity of the obstacle avoidance process and enables the robot to complete flexible obstacle avoidance movement in the complex narrow space.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Reference26 articles.
1. Advanced automation for space missions;Freitas;J. Astronaut. Sci.,1982
2. The European robotic arm for the international space station;Boumans;Robot. Auton. Syst.,1998
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献