Abstract
Intent recognition is a key component of any task-oriented conversational system. The intent recognizer can be used first to classify the user’s utterance into one of several predefined classes (intents) that help to understand the user’s current goal. Then, the most adequate response can be provided accordingly. Intent recognizers also often appear as a form of joint models for performing the natural language understanding and dialog management tasks together as a single process, thus simplifying the set of problems that a conversational system must solve. This happens to be especially true for frequently asked question (FAQ) conversational systems. In this work, we first present an exploratory analysis in which different deep learning (DL) models for intent detection and classification were evaluated. In particular, we experimentally compare and analyze conventional recurrent neural networks (RNN) and state-of-the-art transformer models. Our experiments confirmed that best performance is achieved by using transformers. Specifically, best performance was achieved by fine-tuning the so-called BETO model (a Spanish pretrained bidirectional encoder representations from transformers (BERT) model from the Universidad de Chile) in our intent detection task. Then, as the main contribution of the paper, we analyze the effect of inserting unseen domain words to extend the vocabulary of the model as part of the fine-tuning or domain-adaptation process. Particularly, a very simple word frequency cut-off strategy is experimentally shown to be a suitable method for driving the vocabulary learning decisions over unseen words. The results of our analysis show that the proposed method helps to effectively extend the original vocabulary of the pretrained models. We validated our approach with a selection of the corpus acquired with the Hispabot-Covid19 system obtaining satisfactory results.
Funder
Spanish Ministry of Science and Innovation
European Union
Spanish Ministry of Education
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Reference48 articles.
1. Conversational AI. Dialogue systems, Conversational Agents, and Chatbots;McTear,2020
2. The Conversational Interface
3. Review of Intent Detection Methods in the Human-Machine Dialogue System
4. An Evaluation Dataset for Intent Classification and Out-of-Scope Prediction;Larson;arXiv,2019
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献