Fine-Tuning BERT Models for Intent Recognition Using a Frequency Cut-Off Strategy for Domain-Specific Vocabulary Extension

Author:

Fernández-Martínez FernandoORCID,Luna-Jiménez CristinaORCID,Kleinlein RicardoORCID,Griol DavidORCID,Callejas ZoraidaORCID,Montero Juan ManuelORCID

Abstract

Intent recognition is a key component of any task-oriented conversational system. The intent recognizer can be used first to classify the user’s utterance into one of several predefined classes (intents) that help to understand the user’s current goal. Then, the most adequate response can be provided accordingly. Intent recognizers also often appear as a form of joint models for performing the natural language understanding and dialog management tasks together as a single process, thus simplifying the set of problems that a conversational system must solve. This happens to be especially true for frequently asked question (FAQ) conversational systems. In this work, we first present an exploratory analysis in which different deep learning (DL) models for intent detection and classification were evaluated. In particular, we experimentally compare and analyze conventional recurrent neural networks (RNN) and state-of-the-art transformer models. Our experiments confirmed that best performance is achieved by using transformers. Specifically, best performance was achieved by fine-tuning the so-called BETO model (a Spanish pretrained bidirectional encoder representations from transformers (BERT) model from the Universidad de Chile) in our intent detection task. Then, as the main contribution of the paper, we analyze the effect of inserting unseen domain words to extend the vocabulary of the model as part of the fine-tuning or domain-adaptation process. Particularly, a very simple word frequency cut-off strategy is experimentally shown to be a suitable method for driving the vocabulary learning decisions over unseen words. The results of our analysis show that the proposed method helps to effectively extend the original vocabulary of the pretrained models. We validated our approach with a selection of the corpus acquired with the Hispabot-Covid19 system obtaining satisfactory results.

Funder

Spanish Ministry of Science and Innovation

European Union

Spanish Ministry of Education

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference48 articles.

1. Conversational AI. Dialogue systems, Conversational Agents, and Chatbots;McTear,2020

2. The Conversational Interface

3. Review of Intent Detection Methods in the Human-Machine Dialogue System

4. An Evaluation Dataset for Intent Classification and Out-of-Scope Prediction;Larson;arXiv,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3