Atrial Fibrillation and Anterior Cerebral Artery Absence Reduce Cerebral Perfusion: A De Novo Hemodynamic Model

Author:

Hunter Timothy J.ORCID,Joseph Jermiah J.ORCID,Anazodo Udunna,Kharche Sanjay R.ORCID,McIntyre Christopher W.,Goldman Daniel

Abstract

Background: Atrial fibrillation is a prevalent cardiac arrhythmia and may reduce cerebral blood perfusion augmenting the risk of dementia. We hypothesize that geometric variations in the cerebral arterial structure called the Circle of Willis (CoW) play an important role in influencing cerebral perfusion. The objective of this work was to develop a novel cardio-cerebral lumped parameter hemodynamic model to investigate the role of CoW variants on cerebral blood flow dynamics under atrial fibrillation conditions. Methods: A computational blood flow model was developed by coupling whole-body and detailed cerebral circulation descriptions, modified to represent six common variations of the CoW. Cerebral blood flow dynamics were simulated in common CoW variants, under control and imposed atrial fibrillation conditions. Risk was assessed based on the frequency of beat-wise hypoperfusion events, and sensitivity analysis was performed with respect to this model output. Results: It was found that the geometry of the CoW influenced the frequency of hypoperfusion events at different heart rates, with the variant missing a P1 segment having the highest risk. Sensitivity analysis revealed that intrinsic heart rate is most associated with the considered outcome. Conclusions: Our results suggest that CoW geometry plays an important role in influencing cerebral hemodynamics during atrial fibrillation. The presented study may assist in guiding our future clinical-imaging research.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3