Structure (Epicardial Stenosis) and Function (Microvascular Dysfunction) That Influence Coronary Fractional Flow Reserve Estimation

Author:

Joseph Jermiah J.ORCID,Sun Clara,Lee Ting-Yim,Goldman Daniel,Kharche Sanjay R.ORCID,McIntyre Christopher W.

Abstract

Background. The treatment of coronary stenosis is decided by performing high risk invasive surgery to generate the fractional flow reserve diagnostics index, a ratio of distal to proximal pressures in respect of coronary atherosclerotic plaques. Non-invasive methods are a need of the times that necessitate the use of mathematical models of coronary hemodynamic physiology. This study proposes an extensible mathematical description of the coronary vasculature that provides an estimate of coronary fractional flow reserve. Methods. By adapting an existing computational model of human coronary blood flow, the effects of large vessel stenosis and microvascular disease on fractional flow reserve were quantified. Several simulations generated flow and pressure information, which was used to compute fractional flow reserve under several conditions including focal stenosis, diffuse stenosis, and microvascular disease. Sensitivity analysis was used to uncover the influence of model parameters on fractional flow reserve. The model was simulated as coupled non-linear ordinary differential equations and numerically solved using our implicit higher order method. Results. Large vessel stenosis affected fractional flow reserve. The model predicts that the presence, rather than severity, of microvascular disease affects coronary flow deleteriously. Conclusions. The model provides a computationally inexpensive instrument for future in silico coronary blood flow investigations as well as clinical-imaging decision making. A combination of focal and diffuse stenosis appears to be essential to limit coronary flow. In addition to pressure measurements in the large epicardial vessels, diagnosis of microvascular disease is essential. The independence of the index with respect to heart rate suggests that computationally inexpensive steady state simulations may provide sufficient information to reliably compute the index.

Funder

Canarie

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3