Trademark Image Similarity Detection Using Convolutional Neural Network

Author:

Alshowaish Hayfa,Al-Ohali Yousef,Al-Nafjan AbeerORCID

Abstract

A trademark is any recognizable sign that identifies products/services and distinguishes them from others. Many regional and international intellectual property offices are dedicated to dealing with trademark registration processes. The registration process involves examining the trademark to ensure there is no confusion or interference similarity to any other prior registered trademark. Due to the increasing number of registered trademarks annually, the current manual examining approach is becoming insufficient and more susceptible to human error. As such, there is potential for machine learning applications and deep learning, in particular, to enhance the examination process by providing an automated image detection system to be used by the examiners to facilitate and improve the accuracy of the examination process. Therefore, this paper proposed a trademark similarity detection system using deep-learning techniques to extract image features automatically in order to retrieve a trademark based on shape similarity. Two pretrained convolutional neural networks (VGGNet and ResNet) were individually used to extract image features. Then, their performance was compared. Subsequently, the extracted features were used to calculate the similarity between a new trademark and each of those registered using the Euclidean distance. Thereafter, the system retrieved the most similar trademark to the query according to the smallest distances. As a result, the system achieved an average rank of 67,067.788, a normalized average rank of 0.0725, and a mean average precision of 0.774 on the Middle East Technical University dataset, which displays a promising application in detecting trademark similarity.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3