Comparing Deep Learning and Shallow Learning Techniques for API Calls Malware Prediction: A Study

Author:

Cannarile Angelo,Dentamaro VincenzoORCID,Galantucci StefanoORCID,Iannacone Andrea,Impedovo DonatoORCID,Pirlo GiuseppeORCID

Abstract

Recognition of malware is critical in cybersecurity as it allows for avoiding execution and the downloading of malware. One of the possible approaches is to analyze the executable’s Application Programming Interface (API) calls, which can be done using tools that work in sandboxes, such as Cuckoo or CAPEv2. This chain of calls can then be used to classify if the considered file is benign or malware. This work aims to compare six modern shallow learning and deep learning techniques based on tabular data, using two datasets of API calls containing malware and goodware, where the corresponding chain of API calls is expressed for each instance. The results show the quality of shallow learning approaches based on tree ensembles, such as CatBoost, both in terms of F1-macro score and Area Under the ROC curve (AUC ROC), and training time, making them optimal for making inferences on Edge AI solutions. The results are then analyzed with the explainable AI SHAP technique, identifying the API calls that most influence the process, i.e., those that are particularly afferent to malware and goodware.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference31 articles.

1. Cape Sandboxhttps://capev2.readthedocs.io/en/latest/introduction/what.html

2. Data augmentation based malware detection using convolutional neural networks

3. Behavioral malware detection using deep graph convolutional neural networks;Oliveira;Int. J. Comp. Appl.,2021

4. Malware Analysis Datasets: API Call Sequenceshttps://ieee-dataport.org/open-access/malware-analysis-datasets-api-call-sequences

5. A Novel Approach to Detect Malware Based on API Call Sequence Analysis

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3