Data augmentation based malware detection using convolutional neural networks

Author:

Catak Ferhat Ozgur1ORCID,Ahmed Javed2ORCID,Sahinbas Kevser3,Khand Zahid Hussain4

Affiliation:

1. Simula Research Laboratory, Fornebu, Norway

2. Center of Excellence for Robotics, Artificial Intelligence and Blockchain (CRAIB), Department of Computer Science, Sukkur IBA University, Sukkur, Pakistan

3. Department of Management Information System, Istanbul Medipol University, Istanbul, Turkey

4. Department of Computer Science, Sukkur IBA University, Sukkur, Pakistan

Abstract

Due to advancements in malware competencies, cyber-attacks have been broadly observed in the digital world. Cyber-attacks can hit an organization hard by causing several damages such as data breach, financial loss, and reputation loss. Some of the most prominent examples of ransomware attacks in history are WannaCry and Petya, which impacted companies’ finances throughout the globe. Both WannaCry and Petya caused operational processes inoperable by targeting critical infrastructure. It is quite impossible for anti-virus applications using traditional signature-based methods to detect this type of malware because they have different characteristics on each contaminated computer. The most important feature of this type of malware is that they change their contents using their mutation engines to create another hash representation of the executable file as they propagate from one computer to another. To overcome this method that attackers use to camouflage malware, we have created three-channel image files of malicious software. Attackers make different variants of the same software because they modify the contents of the malware. In the solution to this problem, we created variants of the images by applying data augmentation methods. This article aims to provide an image augmentation enhanced deep convolutional neural network (CNN) models for detecting malware families in a metamorphic malware environment. The main contributions of the article consist of three components, including image generation from malware samples, image augmentation, and the last one is classifying the malware families by using a CNN model. In the first component, the collected malware samples are converted into binary file to 3-channel images using the windowing technique. The second component of the system create the augmented version of the images, and the last part builds a classification model. This study uses five different deep CNN model for malware family detection. The results obtained by the classifier demonstrate accuracy up to 98%, which is quite satisfactory.

Publisher

PeerJ

Subject

General Computer Science

Reference34 articles.

1. A benchmark api call dataset for Windows pe malware classification;Catak,2019

2. Deep learning based sequential model for malware analysis using windows exe api calls;Catak;PeerJ Computer Science,2020

3. Adversarial examples for cnn-based malware detectors;Chen;IEEE Access,2019

4. Detection of malicious code variants based on deep learning;Cui;IEEE Transactions on Industrial Informatics,2018

5. A malware classification method based on memory dump grayscale image;Dai;Digital Investigation,2018

Cited by 35 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3