Sentence Boundary Extraction from Scientific Literature of Electric Double Layer Capacitor Domain: Tools and Techniques

Author:

Miah Md. Saef UllahORCID,Sulaiman JunaidaORCID,Sarwar Talha BinORCID,Naseer AteeqaORCID,Ashraf Fasiha,Zamli Kamal ZuhairiORCID,Jose RajanORCID

Abstract

Given the growth of scientific literature on the web, particularly material science, acquiring data precisely from the literature has become more significant. Material information systems, or chemical information systems, play an essential role in discovering data, materials, or synthesis processes using the existing scientific literature. Processing and understanding the natural language of scientific literature is the backbone of these systems, which depend heavily on appropriate textual content. Appropriate textual content means a complete, meaningful sentence from a large chunk of textual content. The process of detecting the beginning and end of a sentence and extracting them as correct sentences is called sentence boundary extraction. The accurate extraction of sentence boundaries from PDF documents is essential for readability and natural language processing. Therefore, this study provides a comparative analysis of different tools for extracting PDF documents into text, which are available as Python libraries or packages and are widely used by the research community. The main objective is to find the most suitable technique among the available techniques that can correctly extract sentences from PDF files as text. The performance of the used techniques Pypdf2, Pdfminer.six, Pymupdf, Pdftotext, Tika, and Grobid is presented in terms of precision, recall, f-1 score, run time, and memory consumption. NLTK, Spacy, and Gensim Natural Language Processing (NLP) tools are used to identify sentence boundaries. Of all the techniques studied, the Grobid PDF extraction package using the NLP tool Spacy achieved the highest f-1 score of 93% and consumed the least amount of memory at 46.13 MegaBytes.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3