Study of Keyword Extraction Techniques for Electric Double-Layer Capacitor Domain Using Text Similarity Indexes: An Experimental Analysis

Author:

Miah M. Saef Ullah1ORCID,Sulaiman Junaida12,Sarwar Talha Bin3ORCID,Zamli Kamal Z.1,Jose Rajan4ORCID

Affiliation:

1. Faculty of Computing, College of Computing and Applied Sciences, Universiti Malaysia Pahang, Pekan 26600, Malaysia

2. Center for Data Science and Artificial Intelligence (Data Science Center), Universiti Malaysia Pahang, Pekan 26600, Malaysia

3. Department of Computer Science, Faculty of Science and Technology, American International University-Bangladesh (AIUB), Dhaka, Bangladesh

4. Faculty of Industrial Sciences & Technology, Universiti Malaysia Pahang, Gambang 26300, Malaysia

Abstract

Keywords perform a significant role in selecting various topic-related documents quite easily. Topics or keywords assigned by humans or experts provide accurate information. However, this practice is quite expensive in terms of resources and time management. Hence, it is more satisfying to utilize automated keyword extraction techniques. Nevertheless, before beginning the automated process, it is necessary to check and confirm how similar expert-provided and algorithm-generated keywords are. This paper presents an experimental analysis of similarity scores of keywords generated by different supervised and unsupervised automated keyword extraction algorithms with expert-provided keywords from the electric double layer capacitor (EDLC) domain. The paper also analyses which texts provide better keywords such as positive sentences or all sentences of the document. From the unsupervised algorithms, YAKE, TopicRank, MultipartiteRank, and KPMiner are employed for keyword extraction. From the supervised algorithms, KEA and WINGNUS are employed for keyword extraction. To assess the similarity of the extracted keywords with expert-provided keywords, Jaccard, Cosine, and Cosine with word vector similarity indexes are employed in this study. The experiment shows that the MultipartiteRank keyword extraction technique measured with cosine with word vector similarity index produces the best result with 92% similarity with expert-provided keywords. This study can help the NLP researchers working with the EDLC domain or recommender systems to select more suitable keyword extraction and similarity index calculation techniques.

Publisher

Hindawi Limited

Subject

Multidisciplinary,General Computer Science

Reference42 articles.

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3