System-Level Assessment of a C-RAN based on Generalized Space–Frequency Index Modulation for 5G New Radio and Beyond

Author:

Velez VascoORCID,Pavia João PedroORCID,Rita Catarina,Gonçalves Carolina,Souto NunoORCID,Sebastião PedroORCID,Correia AméricoORCID

Abstract

Index modulation (IM) has been attracting considerable research efforts in recent years as it is considered a promising technology that can enhance spectral and energy efficiency and help cope with the rising demand of mobile traffic in future wireless networks. In this paper, we propose a cloud radio access network (C-RAN) suitable for fifth-generation (5G) and beyond systems, where the base stations (BSs) and access points (APs) transmit multidimensional IM symbols, which we refer to as precoding-aided transmitter-side generalized space–frequency IM (PT-GSFIM). The adopted PT-GSFIM approach is an alternative multiuser multiple-input multiple-output (MU-MIMO) scheme that avoids multiuser interference (MUI) while exploiting the inherent diversity in frequency-selective channels. To validate the potential gains of the proposed PT-GSFIM-based C-RAN, a thorough system-level assessment is presented for three different three-dimensional scenarios taken from standardized 5G New Radio (5G NR), using two different numerologies and frequency ranges. Throughput performance results indicate that the 28 GHz band in spite of its higher bandwidth and higher achieved throughput presents lower spectral efficiency (SE). The 3.5 GHz band having lower bandwidth and lower achieved throughput attains higher SE. Overall, the results indicate that a C-RAN based on the proposed PT-GSFIM scheme clearly outperforms both generalized spatial modulation (GSM) and conventional MU-MIMO, exploiting its additional inherent frequency diversity.

Funder

Instituto de Telecomunicações

Fundação para a Ciência e Tecnologia

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference47 articles.

1. 3rd Generation Partnership Project (3GPP) (2022, January 07). TS 38.101 v14.1.1, 5GNR. User Equipment (UE) radio transmission and reception, Release 15, August 2017. Available online: https://3gpp.org/ftp/Specs/archive/38_series/38.101-1/38101-1-001.zip.

2. Marques da Silva, M., and Dinis, R. (2021). Power-Ordered NOMA with Massive MIMO for 5G Systems. Appl. Sci., 11.

3. Index Modulation Techniques for Next-Generation Wireless Networks;IEEE Access.,2017

4. Index modulation techniques for 5G wireless networks;IEEE Commun. Mag.,2016

5. Index Modulation for 5G: Striving to Do More with Less;IEEE Wirel. Commun.,2018

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3