Abstract
The aim of this article is to study the conventional and cooperative power-order Non-Orthogonal Multiple Access (NOMA) using the Single Carrier with Frequency Domain Equalization (SC-FDE) block transmission technique, associated with massive Multiple-Input Multiple-Output (MIMO), evidencing its added value in terms of spectral efficiency of such combined scheme. The new services provided by Fifth Generation of Cellular Communications (5G) are supported by new techniques, such as millimeter waves (mm-wave), alongside the conventional centimeter waves and by massive MIMO (m-MIMO) technology. NOMA is expected to be incorporated in future releases of 5G, as it tends to achieve a capacity gain, highly required for the massive number of Internet of things (IoT) devices, namely to support an efficient reuse of limited spectrum. This article shows that the combination of conventional and cooperative NOMA with m-MIMO and SC-FDE, tends to achieve capacity gains, while the performance only suffers a moderate degradation, being an acceptable alternative for future evolutions of 5G. Moreover, it is shown that Cooperative NOMA tends to outperform Conventional NOMA. Moreover, this article shows that the Maximum Ratio Combiner (MRC) receiver is very well fitted to be combined with NOMA and m-MIMO, as it achieves a good performance while reducing the receiver complexity.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Capacity, Spectral and Energy Efficiency of OMA and NOMA Systems;2024 35th Conference of Open Innovations Association (FRUCT);2024-04-24
2. System-Level Assessment of Massive Multiple-Input–Multiple-Output and Reconfigurable Intelligent Surfaces in Centralized Radio Access Network and IoT Scenarios in Sub-6 GHz, mm-Wave, and THz Bands;Applied Sciences;2024-01-28
3. Channel Estimation and Sparse Signal Processing in mm- Wave MIMO Systems;2023 7th International Conference On Computing, Communication, Control And Automation (ICCUBEA);2023-08-18
4. Performance Comparison of DPS in NOMA for Different MIMO Antenna Configurations;2023 9th International Conference on Computer and Communication Engineering (ICCCE);2023-08-15
5. 5G Frequency Standardization, Technologies, Channel Models, and Network Deployment: Advances, Challenges, and Future Directions;Sustainability;2023-03-14